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• Wi-Fi sensing using Channel State Information (CSI) is an innovative approach 
that leverages the characteristics of wireless signals to detect and analyze 
environmental changes

• CSI data provides detailed information about the physical layer of a wireless 
connection, capturing the state of the channel, including the amplitude and 
phase of the signal at each subcarrier

• This information allows for precise insights into the signal's propagation 
environment, enabling the detection of various activities and changes within 
a space

Wi-Fi Sensing with CSI Data Results

• Expanding Data Collection: gather data from a 
wider range of environments to improve model
robustness.

• Enhanced Generalization: Explore the potential 
of transfer learning to improve model 
adaptability across different environments.

Future Work, References, and Acknowledgments

Data Collection

Devices Setup
• 2 ESP32-S3 chips (Tx and Rx), Espressif ESP CSI toolkit
• Bandwidth: 802.11n, 20 MHz
• Subcarriers: 52
• Send Frequency: 100 packets/second

Room Selection (25 rooms total)
• 10 rooms (near AP/near device)
• 10 rooms(Positional Point: 0-1m, 1-2m, 2-3m, 3-4m)
• 5 rooms (random configurations for human presence)

Environments
• Study rooms, lab rooms, living rooms
• Data Classification
• No one present/Someone near transmitter/Someone near receiver

Near AP - Near device localization
• Each room is a test set once (leave-one-room-out cross-validation) to ensure generalization. 

Data is reshaped and labeled.
• The model uses a pre-trained ResNet50 base with custom layers, trained for 20 epochs, 

batch size 16, Adam optimizer, and sparse categorical cross entropy loss. Learning rate 
adjustments are managed by a scheduler.

• Highest validation accuracy for each room is recorded, showing the model's ability to detect 
and localize human presence.

Positional Point Classification (Line of Sight)
• Localization from specific points to device distance ranges (0-1m, 1-2m, 2-3m, 3-4m) 
• Utilized LSTM and RNN models trained on 1,896 samples and tested on 200 samples. 

Training set included samples from 9 rooms, while the test set focused on a single room

Presence Detection
• Detect human presence in a home with >90 % True Positive rate with commodity WiFi 

CSI device

• Apply a 3-level wavelet transform to CSI data to capture sharp transitions and intrinsic properties
• Utilize a Recurrent Neural Network (RNN) for home presence detection, configured with input 

dimensions of 200 and a hidden layer of 64 units
• Optimize the RNN model for analyzing time-variant CSI signals in a sequential manner, enabling 

effective extraction of temporal patterns
• Apply layer normalization to the final hidden state and map the processed temporal features to a 

binary outcome for presence detection via a fully connected layer

Presence Localization

Presence Detection
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Objectives

• Presence Detection: Detect human presence in a home using commodity 
Wi-Fi CSI devices

• Presence Localization: Localize human presence, determining whether a 
person is near the access point (AP) or near the device

• Generality: Develop a solution that is generalizable to any RF environment, 
ensuring broad applicability and robustness across different settings

Presence Localization 
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Room Accuracy (%) True Positive Rate 
(%)

Suz_334 73 66

Lab445 75 78

Suz_338 72 61

Ode_117B 71 69

Limitations for Model Performance:
• Different collection methods and environmental 

factors can significantly impact dataset consistency
• Limited Data Size: Insufficient data collected from 

each environment 
Challenges:
• Model Generalization Across Environments: 

Environmental diversity (e.g., room size, furniture, 
ambient noise) affects WiFi signal propagation

RNN Model Result For Positional Point  


